

HDZ-003-1103011 Seat No. _____

M. Sc. (Chemistry) (Sem. III) (CBCS) Examination November / December - 2017

C (PM) - 304: Physical & Material Chemistry

(Electro Chemistry) (New Course) (Ele. - II)

Faculty Code: 003

Subject Code: 1103011

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) All questions carry equal marks.
- 1 Answer the following: (any seven)
 - Define: Transference numbers, over voltage, conductor, (a) Degree of dissociation.
 - Give an account of types of solvent. (b)
 - (c) Explain: Acidity function.
 - What are super conductors? Give the classification of super (d) conductors.
 - What are Faraday's laws of electrolysis. (e)
 - Explain validity of Debye Huckel onsager equation. (f)
 - Give a brief account of abnormal transference number. (g)
 - What is polarization? Give the causes of polarization. (h)
 - Define different types of conductors. (i)
 - Determine the dissociation constant of weak acid. (j)
- 2 Answer the following: (any three)
 - Hydrogen over voltage. (a)
 - (b) Dissociation constant by emf method.
 - Discuss evidences for the existence of dipolar ions. (c)
 - Describe the determination of transference number by moving (d) boundary method.

- **3** Answer the following:
 - (a) Explain neutralization curve.
 - (b) Describe the properties of super conductor in detail.

OR

- (a) Discuss ionic product of water by conductance method.
- (b) Explain the Grotthus mechanism of electrolysis. Give evidences of ionic theory.
- 4 Answer the following: (any three)
 - (a) Calculate the molar conductace of NH_4OH at infinite dilution from the following data :

$$\lambda^{\circ}_{NaOH} = 247.8 \times 10^{-4} \text{ cm}^2 \text{ mho mole}^{-1}$$
 $\lambda^{\circ}_{NH_4Cl} = 149.7 \times 10^{-4} \text{ cm}^2 \text{ mho mole}^{-1}$
 $\lambda^{\circ}_{NaCl} = 126.45 \times 10^{-4} \text{ cm}^2 \text{ mho mole}^{-1}$

- (b) Discuss the effect of pH, current density and temperature on overvoltage.
- (c) Discuss the determination of dissociation constant of ampholytes by approximate method.
- (d) Derive an expression to corelacte equivalent conductance and ionic mobility in electrolytic solution.
- 5 Answer the following: (any two)
 - (a) Explain the mechanisms of electrolytic conductance in detail.
 - (b) Discuss electrolysis of water. Calculate the ionic mobility of K^+ and OH^- ions at infinite dilution.

Give that:

$$\lambda_{K^{+}}^{\circ} = 73.5 \times 10^{-4} \text{ mho m}^{2} \text{ mol}^{-1}$$

$$\lambda_{OH^{-}}^{\circ} = 197.6 \times 10^{-4} \text{ mho m}^{2} \text{ mol}^{-1}$$

- (c) Describe the ionic diffusion as slow process.
- (d) Explain the determination of dissociation constant by calorimetric method.